Nâng Cao
Deep Learning
Generative AI
Reinforcement Learning
Graph Neural Networks
AI Fairness
AI Reasoning
Self-Supervised Learning

Khóa học nâng cao 6 tháng bao gồm các chủ đề AI tiên tiến như Transformers, Generative AI, Self-Supervised Learning, Reinforcement Learning và AI Reasoning.

6 Tháng
4 min read
Nâng Cao
AI Course

Tháng 1-3: Advanced Architectures & Self-Supervised Learning (Kiến Trúc AI Tiên Tiến & Học Tự Giám Sát)

Goal (Mục tiêu): Master modern deep learning techniques and architectures
Hands-on Focus (Thực hành): Fine-tuning and developing cutting-edge AI models

🔥 Week 1-2: Advanced Transformers & Attention Mechanisms (Transformer nâng cao & Cơ Chế Chú Ý)

  • Deep dive into Self-Attention & Multi-Head Attention (Chú ý Đa Đầu)
  • Vision Transformers (ViT) & how they compare to CNNs
  • Transformer variations: Long-Short Transformer, Linear Transformers
  • Efficient Transformers: FlashAttention, Performer, Linformer

📝 Project: Implement Vision Transformer (ViT) & compare it with ResNet


🧑‍🎨 Week 3-4: Generative AI & Diffusion Models (AI Tạo Sinh & Mô Hình Khuếch Tán)

  • Stable Diffusion & DALL·E (Tạo Ảnh Bằng AI)
  • GANs (Generative Adversarial Networks) & StyleGAN
  • Autoencoders & Variational Autoencoders (VAEs)
  • Text-to-Image & Image-to-Text Models

📝 Project: Train a Stable Diffusion Model to generate artistic images


🔄 Week 5-6: Self-Supervised Learning (Học Tự Giám Sát - SSL)

  • Contrastive Learning (SimCLR, MoCo, BYOL, DINO)
  • SSL for NLP: BERT, RoBERTa, T5
  • SSL for Vision: MAE, MoCo, DINO

📝 Project: Implement a contrastive learning model for image classification


🌐 Week 7-8: Graph Neural Networks (Mạng Nơ-Ron Đồ Thị - GNNs)

  • Introduction to Graph Representation Learning
  • Graph Convolutional Networks (GCNs) & Graph Attention Networks (GATs)
  • Applications in social networks, fraud detection, recommendation systems

📝 Project: Build a GNN for social network link prediction


Tháng 4-6: Large Language Models, Reinforcement Learning, Fine-Tuning & AI Reasoning (Mô hình Ngôn Ngữ Lớn, Học Tăng Cường, Tinh Chỉnh Mô Hình & Lý Luận AI)

🧠 Week 9-12: In-Depth Study of Large Language & Multimodal Models (Mô Hình Ngôn Ngữ Lớn & Mô Hình Đa Phương Thức)

  • Overview of Large Language Models (LLMs): GPT-3, T5, BERT, LLaMA
  • Introduction to Multimodal Models: CLIP, Flamingo, VisualGPT
  • Understanding the architecture: Attention mechanisms, positional encoding, transformers
  • Applications of LLMs: Text generation, question answering, summarization
  • Applications of LMMs: Text-to-image, image captioning, video generation

📝 Project: Implement a text-to-image model using CLIP or DALL·E


🤖 Week 13-14: Reinforcement Learning & AI Agents (Học Tăng Cường & Tác Tử AI)

  • Fundamentals of Reinforcement Learning (Học Tăng Cường)
  • Deep Q-Learning (DQN), PPO, A3C
  • RL for game AI, robotics, finance
  • Advanced RL Topics: Proximal Policy Optimization (PPO), Actor-Critic Methods, Deep Deterministic Policy Gradient (DDPG)
  • RL for aligning Large Language Models (e.g., RLHF - Reinforcement Learning from Human Feedback)

📝 Project: Train an AI to play Atari games with RL


⚙️ Week 15-16: Fine-Tuning & Adaptation of Foundation Models (Tinh Chỉnh Mô Hình Nền Tảng - FM Tuning)

  • LoRA (Low-Rank Adaptation) & QLoRA
  • Adapter Layers, Prefix Tuning, Parameter Efficient Fine-Tuning (PEFT)
  • Fine-tuning Llama, GPT, BERT, & Stable Diffusion

📝 Project: Fine-tune GPT-3.5 for domain-specific text generation


🔀 Week 17-18: Mixture of Experts (Mô Hình Pha Trộn Chuyên Gia - MoE)

  • MoE architecture & routing algorithms
  • Sparse vs. Dense MoE models
  • Scaling large models efficiently

📝 Project: Implement a MoE transformer for NLP tasks


⚖️ Week 19-20: AI Fairness & Explainability (Công Bằng AI & Giải Thích Mô Hình)

  • Bias in AI models & debiasing techniques
  • SHAP, LIME, Integrated Gradients for explainability
  • Ethical considerations in AI

📝 Project: Analyze fairness & bias in a deep learning model


🚀 Week 21-24: AI Reasoning & Real-World AI Deployments (Lý luận AI & Triển khai AI thực tế)

  • Chain-of-Thought (CoT) Prompting & Self-Consistency
  • Tool-using agents: ReAct, Toolformer
  • Hybrid AI: Symbolic + Deep Learning Systems
  • AI in Finance, Medicine, and Autonomous Systems
  • Large-Scale Model Serving with Triton, vLLM
  • Model Compression (Distillation, Quantization, Pruning

📝 Project: Deploy a fine-tuned foundation model for a real-world application


Time Commitment (Thời Gian Học)

📅 6-Tháng duration (6 tháng học)
15 hours/week (10-15 giờ/tuần, bao gồm 5 giờ học và 10 giờ làm project)

logo
DeepViet

DeepViet mang lại các khóa học AI từ cơ bản đến nâng cao, kết hợp giữa lý thuyết và thực hành, trang bị cho bạn nền tảng vững chắc để theo đuổi đam mê trong lĩnh vực AI.

DeepViet